Emiliania huxleyi
Lua error in package.lua at line 80: module 'strict' not found.
Emiliania huxleyi | |
---|---|
A scanning electron micrograph of a single Emiliania huxleyi cell. | |
Scientific classification | |
Domain: | |
Kingdom: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: |
E. huxleyi
|
Binomial name | |
Emiliania huxleyi (Lohm.) Hay and Mohler
|
Lua error in Module:Taxonbar/candidate at line 22: attempt to index field 'wikibase' (a nil value).
Emiliania huxleyi, often abbreviated "EHUX", is a species of coccolithophore with a global distribution from the tropics to subarctic waters. It is one of thousands of different photosynthetic plankton that freely drift in the euphotic zone of the ocean, forming the basis of virtually all marine food webs. It is studied for the extensive blooms it forms in nutrient-depleted waters after the reformation of the summer thermocline. Like other coccolithophores, E. huxleyi is a single-celled phytoplankton covered with uniquely ornamented calcite disks called coccoliths (also informally known as liths or scales). Individual coccoliths are abundant in marine sediments although complete coccospheres are more unusual. In the case of E. huxleyi, not only the shell, but also the soft part of the organism may be recorded in sediments. It produces a group of chemical compounds that are very resistant to decomposition. These chemical compounds, known as alkenones, can be found in marine sediments long after other soft parts of the organisms have decomposed. Alkenones are most commonly used by earth scientists as a means to estimate past sea surface temperatures.
Contents
Basic facts
Emiliania huxleyi was named after Thomas Huxley and Cesare Emiliani, who were the first to examine sea-bottom sediment and discover the coccoliths within it. It is the most numerically abundant and widespread coccolithophore species. Its coccoliths are transparent and commonly colourless, but are formed of calcite which refracts light very efficiently in the water column. This, and the high concentrations caused by continual shedding of their coccoliths makes E. huxleyi blooms easily visible from space. Satellite images show that blooms can cover large areas, with complementary shipboard measurements indicating that E. huxleyi is by far the dominant phytoplankton species under these conditions. This species has been an inspiration for James Lovelock's Gaia hypothesis which claims that living organisms collectively self-regulate biogeochemistry and climate at nonrandom metastable states.
Abundance and distribution
E. huxleyi is by far the most abundant coccolithophore found in the Earth's oceans, and is considered ubiquitous, occurring everywhere except the polar regions. During massive blooms (which can cover over 100,000 square kilometers), EHUX cell concentrations can outnumber those of all other species in the region combined, accounting for 75% or more of the total number of photosynthetic plankton in the area. EHUX blooms regionally act as an important source of calcium carbonate and dimethyl sulfide, the massive production of which can have a significant impact not only on the properties of the surface mixed layer, but also on global climate. The blooms can be identified through satellite imagery because of the large amount of light back-scattered from the water column, which provides a method to assess their biogeochemical importance on both basin and global scales. These blooms are prevalent in the Norwegian fjords, causing satellites to pick up "white waters", which describes the reflectance of the blooms picked up by satellites. This is due to the mass of coccoliths reflecting the incoming sunlight back out of the water, allowing the extent of EHUX blooms to be distinguished in fine detail.
Extensive E. huxleyi blooms can have a visible impact on sea albedo. While multiple scattering can increase light path per unit depth, increasing absorption and solar heating of the water column, EHUX has inspired proposals for geomimesis,[1] because micron-sized air bubbles are specular reflectors, and so in contrast to E. huxleyi, tend to lower the temperature of the upper water column. As with self-shading within water-whitening coccolithophore plankton blooms, this may reduce photosynthetic productivity by altering the geometry of the euphotic zone. Both experiments and modeling are needed to quantify the potential biological impact of such effects, and the corollary potential of reflective blooms of other organisms to increase or reduce evaporation and methane evolution by altering fresh water temperatures.
Biogeochemical impacts
Climate change
As with all phytoplankton, primary production of EHUX through photosynthesis is a sink of carbon dioxide. However, the production of coccoliths through calcification is a source of CO2. This means that coccolithophores, including EHUX, have the potential to act as a net source of CO2 out of the ocean. Whether they are a net source or sink and how they will react to ocean acidification is not well understood.
Ocean heat retention
Scattering stimulated by EHUX blooms not only causes more heat and light to be pushed back up into the atmosphere than usual, but also cause more of the remaining heat to be trapped closer to the ocean surface. This is problematic because it is the surface water that exchanges heat with the atmosphere, and EHUX blooms may tend to make the overall temperature of the water column dramatically cooler over longer time periods. However, the importance of this effect, whether positive or negative, is currently being researched and has not yet been established.
-
Landsat image of a 1999 E. huxleyi bloom.
-
E. huxleyi bloom in the Barents Sea.
See also
- CLAW hypothesis
- Dimethylsulfoniopropionate
- Emiliania huxleyi virus 86, a marine virus that infects E. huxleyi
Notes
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
References
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
External links
- ↑ Seitz, R. (2011). Bright water: Hydrosols, water conservation, and climate change. Climatic Change, 105:365-381.