Altitude
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Altitude or height (sometimes known as depth) is defined based on the context in which it is used (aviation, geometry, geographical survey, sport, and more). As a general definition, altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The reference datum also often varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.
Vertical distance measurements in the "down" direction are commonly referred to as depth.
Contents
Altitude in aviation
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
In aviation, the term altitude can have several meanings, and is always qualified by either explicitly adding a modifier (e.g. "true altitude"), or implicitly through the context of the communication. Parties exchanging altitude information must be clear which definition is being used.[1]
Aviation altitude is measured using either mean sea level (MSL) or local ground level (above ground level, or AGL) as the reference datum.
Pressure altitude divided by 100 feet (30 m) as the flight level, and is used above the transition altitude (18,000 feet (5,500 m) in the US, but may be as low as 3,000 feet (910 m) in other jurisdictions); so when the altimeter reads 18,000 ft on the standard pressure setting the aircraft is said to be at "Flight level 180". When flying at a flight level, the altimeter is always set to standard pressure (29.92 inHg or 1013.25 hPa).
On the flight deck, the definitive instrument for measuring altitude is the pressure altimeter, which is an aneroid barometer with a front face indicating distance (feet or metres) instead of atmospheric pressure.
There are several types of aviation altitude:
- Indicated altitude is the reading on the altimeter when the altimeter is set to the local barometric pressure at mean sea level. In UK aviation radiotelephony usage, the vertical distance of a level, a point or an object considered as a point, measured from mean sea level; this is referred to over the radio as altitude.(see QNH)[2]
- Absolute altitude is the height of the aircraft above the terrain over which it is flying. It can be measured using a radar altimeter (or "absolute altimeter").[1] Also referred to as "radar height" or feet/metres above ground level (AGL).
- True altitude is the actual elevation above mean sea level. It is indicated altitude corrected for non-standard temperature and pressure.
- Height is the elevation above a ground reference point, commonly the terrain elevation. In UK aviation radiotelephony usage, the vertical distance of a level, a point or an object considered as a point, measured from a specified datum; this is referred to over the radio as height, where the specified datum is the airfield elevation (see QFE)[2]
- Pressure altitude is the elevation above a standard datum air-pressure plane (typically, 1013.25 millibars or 29.92" Hg). Pressure altitude is used to indicate "flight level" which is the standard for altitude reporting in the U.S. in Class A airspace (above roughly 18,000 feet). Pressure altitude and indicated altitude are the same when the altimeter setting is 29.92" Hg or 1013.25 millibars.
- Density altitude is the altitude corrected for non-ISA International Standard Atmosphere atmospheric conditions. Aircraft performance depends on density altitude, which is affected by barometric pressure, humidity and temperature. On a very hot day, density altitude at an airport (especially one at a high elevation) may be so high as to preclude takeoff, particularly for helicopters or a heavily loaded aircraft.
These types of altitude can be explained more simply as various ways of measuring the altitude:
- Indicated altitude – the altimeter reading
- Absolute altitude – altitude in terms of the distance above the ground directly below
- True altitude – altitude in terms of elevation above sea level
- Height – altitude in terms of the distance above a certain point
- Pressure altitude – the air pressure in terms of altitude in the International Standard Atmosphere
- Density altitude – the density of the air in terms of altitude in the International Standard Atmosphere
Altitude in atmospheric studies
Regions
The Earth's atmosphere is divided into several altitude regions. These regions start and finish at varying heights depending on season and distance from the poles. The altitudes stated below are averages:[3]
- Troposphere — surface to 8,000 metres (5.0 mi) at the poles – 18,000 metres (11 mi) at the equator, ending at the Tropopause.
- Stratosphere — Troposphere to 50 kilometres (31 mi)
- Mesosphere — Stratosphere to 85 kilometres (53 mi)
- Thermosphere — Mesosphere to 675 kilometres (419 mi)
- Exosphere — Thermosphere to 10,000 kilometres (6,200 mi)
High altitude and low pressure
Regions on the Earth's surface (or in its atmosphere) that are high above mean sea level are referred to as high altitude. High altitude is sometimes defined to begin at 2,400 metres (8,000 ft) above sea level.[4][5][6]
At high altitude, atmospheric pressure is lower than that at sea level. This is due to two competing physical effects: gravity, which causes the air to be as close as possible to the ground; and the heat content of the air, which causes the molecules to bounce off each other and expand.[7]
Because of the lower pressure, the air expands as it rises, which causes it to cool.[8][9] Thus, high altitude air is cold, which causes a characteristic alpine climate. This climate dramatically affects the ecology at high altitude.
Relation between temperature and altitude in Earth's atmosphere
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
The environmental lapse rate (ELR), is the rate of decrease of temperature with altitude in the stationary atmosphere at a given time and location. As an average, the International Civil Aviation Organization (ICAO) defines an international standard atmosphere (ISA) with a temperature lapse rate of 6.49 K(°C)/1,000 m (3.56 °F or 1.98 K(°C)/1,000 Ft) from sea level to 11 kilometres (36,000 ft). From Lua error in Module:Convert at line 272: attempt to index local 'cat' (a nil value)., the constant temperature is −56.5 °C (−69.7 °F), which is the lowest assumed temperature in the ISA. The standard atmosphere contains no moisture. Unlike the idealized ISA, the temperature of the actual atmosphere does not always fall at a uniform rate with height. For example, there can be an inversion layer in which the temperature increases with height.
Altitude effects on organisms
Humans
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Medicine recognizes that altitudes above 1,500 metres (4,900 ft) start to affect humans,[10] and there is no record of humans living at extreme altitudes above 5,500–6,000 metres (18,000–19,700 ft) for more than two years.[11] As the altitude increases, atmospheric pressure decreases, which affects humans by reducing the partial pressure of oxygen.[12] The lack of oxygen above 2,400 metres (8,000 ft) can cause serious illnesses such as altitude sickness, high altitude pulmonary edema, and high altitude cerebral edema.[6] The higher the altitude, the more likely are serious effects.[6] The human body can adapt to high altitude by breathing faster, having a higher heart rate, and adjusting its blood chemistry.[13][14] It can take days or weeks to adapt to high altitude. However, above 8,000 metres (26,000 ft), (in the "death zone"), altitude acclimatization becomes impossible.[15]
There is a significantly lower overall mortality rate for permanent residents at higher altitudes.[16] Additionally, there is a dose response relationship between increasing elevation and decreasing obesity prevalence in the United States.[17] In addition, the recent hypothesis suggests that high altitude could be protective against Alzheimer's disease via action of erythropoietin, a hormone released by kidney in response to hypoxia.[18] However, people living at higher elevations have a statistically significant higher rate of suicide.[19] The cause for the increased suicide risk is unknown so far.[19]
Athletes
For athletes, high altitude produces two contradictory effects on performance. For explosive events (sprints up to 400 metres, long jump, triple jump) the reduction in atmospheric pressure signifies less atmospheric resistance, which generally results in improved athletic performance.[20] For endurance events (races of 5,000 metres or more) the predominant effect is the reduction in oxygen which generally reduces the athlete's performance at high altitude. Sports organizations acknowledge the effects of altitude on performance: the International Association of Athletic Federations (IAAF), for example, marks record performances achieved at an altitude greater than 1,000 metres (3,300 ft) with the letter "A".[21]
Athletes also can take advantage of altitude acclimatization to increase their performance. The same changes that help the body cope with high altitude increase performance back at sea level.[22][23] These changes are the basis of altitude training which forms an integral part of the training of athletes in a number of endurance sports including track and field, distance running, triathlon, cycling and swimming.
Other organisms
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Decreased oxygen availability and decreased temperature make life at high altitude challenging. Despite these environmental conditions, many species have been successfully adapted at high altitudes. Animals have developed physiological adaptations to enhance oxygen uptake and delivery to tissues which can be used to sustain metabolism. The strategies used by animals to adapt to high altitude depend on their morphology and phylogeny. For example, small mammals face the challenge of maintaining body heat in cold temperatures, due to their large volume to surface area ratio. As oxygen is used as a source of metabolic heat production, the hypobaric hypoxia at high altitudes is problematic.
There is also a general trend of smaller body sizes and lower species richness at high altitudes, likely due to lower oxygen partial pressures.[24] These factors may decrease productivity in high altitude habitats, meaning there will be less energy available for consumption, growth, and activity.[25]
However, some species, such as birds,thrive at high altitude.[26] Birds thrive because of physiological features that are advantageous for high-altitude flight.
See also
- Atmosphere of Earth
- List of capital cities by altitude
- Coffin corner (aerodynamics) At higher altitudes, the air density is lower than at sea level. At a certain altitude it is very difficult to keep the airplane in stable flight.
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
External links
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Downloadable ETOPO2 Raw Data Database (2 minute grid)
- Downloadable ETOPO5 Raw Data Database (5 minute grid)
- Calculate true altitude with these JavaScript applications
- Find the altitude of any place
- ↑ 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 6.0 6.1 6.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 19.0 19.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.