Hoffman–Singleton graph
Hoffman–Singleton graph | |
---|---|
200px | |
Named after | Alan J. Hoffman Robert R. Singleton |
Vertices | 50 |
Edges | 175 |
Radius | 2 |
Diameter | 2[1] |
Girth | 5[1] |
Automorphisms | 252,000 (PSU(3,52):2)[2] |
Chromatic number | 4 |
Chromatic index | 7[3] |
Genus | 29[4] |
Properties | Strongly regular Symmetric Hamiltonian Integral Cage Moore graph |
In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7-regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1).[5] It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest order Moore graph known to exist.[6] Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage.
Contents
Construction
There are many ways to construct the Hoffman-Singleton graph.
Construction from pentagons and pentagrams
Take five pentagons Ph and five pentagrams Qi, so that vertex j of Ph is adjacent to vertices j-1 and j+1 of Ph and vertex j of Qi is adjacent to vertices j-2 and j+2 of Qi. Now join vertex j of Ph to vertex hi+j of Qi. (All indices mod 5.)
Construction from triads and Fano planes
Take the Fano plane and permute its 7 points to make a set of 30 Fanos. Pick any one of these 30 Fanos; there will be another 14 Fanos that share exactly one triplet ("line") with the first one. Take those 15 Fanos and discard the other 15. Take the 7C3 = 35 triads on 7 numbers. Now connect a triad to a Fano that includes it, and connect disjoint triads to each other. The resulting graph is the Hoffman-Singleton graph, with the 50 vertices corresponding to the 35 triads + 15 Fanos, and each vertex has degree 7. Vertices corresponding to Fanos are linked to 7 triads by definition, as the Fano plane has 7 lines. Each triad is linked to 3 different Fanos that include it, and to 4 other triads with which it is disjoint.
Algebraic properties
The automorphism group of the Hoffman–Singleton graph is a group of order 252,000 isomorphic to PΣU(3,52) the semidirect product of the projective special unitary group PSU(3,52) with the cyclic group of order 2 generated by the Frobenius automorphism. It acts transitively on the vertices, on the edges and on the arcs of the graph. Therefore the Hoffman–Singleton graph is a symmetric graph. The stabilizer of a vertex of the graph is isomorphic to the symmetric group S7 on 7 letters. The setwise stabilizer of an edge is isomorphic to Aut(A6)=A6.22, where A6 is the alternating group on 6 letters. Both of the two types of stabilizers are maximal subgroups of the whole automorphism group of the Hoffman-Singleton graph.
The characteristic polynomial of the Hoffman–Singleton graph is equal to . Therefore the Hoffman–Singleton graph is an integral graph: its spectrum consists entirely of integers.
Subgraphs
Using only the fact that the Hoffman–Singleton graph is a strongly regular graph with parameters (50,7,0,1), it can be shown that there are 1260 5-cycles contained in the Hoffman–Singleton graph.
Additionally, the Hoffman–Singleton graph contains 525 copies of the Petersen graph. Removing any one of these leaves a copy of the unique (6,5) cage.[7]
See also
Notes
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
References
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found..
- ↑ 1.0 1.1 Weisstein, Eric W., "Hoffman-Singleton Graph", MathWorld.
- ↑ Hafner, P. R. "The Hoffman-Singleton Graph and Its Automorphisms." J. Algebraic Combin. 18, 7-12, 2003.
- ↑ Royle, G. "Re: What is the Edge Chromatic Number of Hoffman-Singleton?" GRAPHNET@istserv.nodak.edu posting. Sept. 28, 2004. [1]
- ↑ Conder, M.D.E.; Stokes, K.: "Minimum genus embeddings of the Hoffman-Singleton graph", preprint, August 2014.
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found.