Borsuk's conjecture

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
File:Borsuk Hexagon.svg
An example of a hexagon cut into three pieces of smaller diameter.

The Borsuk problem in geometry, for historical reasons incorrectly called Borsuk's conjecture, is a question in discrete geometry.

Problem

In 1932 Karol Borsuk showed[1] that an ordinary 3-dimensional ball in Euclidean space can be easily dissected into 4 solids, each of which has a smaller diameter than the ball, and generally d-dimensional ball can be covered with d + 1 compact sets of diameters smaller than the ball. At the same time he proved that d subsets are not enough in general. The proof is based on the Borsuk–Ulam theorem. That led Borsuk to a general question:

Die folgende Frage bleibt offen: Lässt sich jede beschränkte Teilmenge E des Raumes \Bbb R^n in (n + 1) Mengen zerlegen, von denen jede einen kleineren Durchmesser als E hat?[1]

This can be translated as:

The following question remains open: Can every bounded subset E of the space \Bbb R^n be partitioned into (n + 1) sets, each of which has a smaller diameter than E?

The question got a positive answer in the following cases:

  • d = 2 — which is the original result by Karol Borsuk (1932).
  • d = 3 — shown by Julian Perkal (1947),[2] and independently, 8 years later, by H. G. Eggleston (1955).[3] A simple proof was found later by Branko Grünbaum and Aladár Heppes.
  • For all d for the smooth convex bodies — shown by Hugo Hadwiger (1946).[4][5]
  • For all d for centrally-symmetric bodies — shown by A.S. Riesling (1971).[6]
  • For all d for bodies of revolution — shown by Boris Dekster (1995).[7]

The problem was finally solved in 1993 by Jeff Kahn and Gil Kalai, who showed that the general answer to Borsuk's question is no.[8] Their construction shows that d + 1 pieces do not suffice for d = 1,325 and for each d > 2,014.

After Andriy V. Bondarenko had shown that Borsuk’s conjecture is false for all d ≥ 65,[9] [10] the current best bound, due to Thomas Jenrich, is 64.[11][12]

Apart from finding the minimum number d of dimensions such that the number of pieces \alpha(d) > d+1 mathematicians are interested in finding the general behavior of the function \alpha(d). Kahn and Kalai show that in general (that is for d big enough), one needs \alpha(d) \ge (1.2)^\sqrt{d} number of pieces. They also quote the upper bound by Oded Schramm, who showed that for every ε, if d is sufficiently large, \alpha(d) \le \left(\sqrt{3/2} + \varepsilon\right)^d.[13] The correct order of magnitude of α(d) is still unknown.[14] However, it is conjectured that there is a constant c > 1 such that \alpha(d) > c^d for all d ≥ 1.

See also

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

Further reading

External links

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.