Byerlee's law
In rheology, Byerlee's law, also known as Byerlee's friction law[1] concerns the shear stress (τ) required to slide one rock over another. The rocks have macroscopically flat surfaces, but the surfaces have small asperities that make them "rough." For a given experiment and at normal stresses (σn) below about 2000 bars (200 MPa) the shear stress increases approximately linearly with the normal stress (τ = 0.85 σn) and is highly dependent on rock type and the character (roughness) of the surfaces see Mohr-Coulomb friction law. Byerlee's law states that with increased normal stress the required shear stress continues to increase, but the rate of increase decreases (τ = 0.5 + 0.6σn), and becomes nearly independent of rock type.[2]
The law describes an important property of crustal rock, and can be used to determine when slip along a geological fault takes place.
See also
Notes and References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
<templatestyles src="Asbox/styles.css"></templatestyles>