Cantellated 5-cell

From Infogalactic: the planetary knowledge core
(Redirected from Cantitruncated 5-cell)
Jump to: navigation, search
4-simplex t0.svg
5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-simplex t02.svg
Cantellated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
4-simplex t012.svg
Cantitruncated 5-cell
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Orthogonal projections in A4 Coxeter plane

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 5-cell.

There are 2 unique degrees of runcinations of the 5-cell including with permutations truncations.

Cantellated 5-cell

Cantellated 5-cell
Schlegel half-solid cantellated 5-cell.png
Schlegel diagram with
octahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,2{3,3,3}
rr{3,3,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells 20 5 Cuboctahedron.png(3.4.3.4)
5 Octahedron.png(3.3.3.3)
10 Triangular prism.png(3.4.4)
Faces 80 50{3}
30{4}
Edges 90
Vertices 30
Vertex figure 80px
Irreg. triangular prism
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 3 4 5

The cantellated 5-cell or small rhombated pentachroron is a uniform 4-polytope. It has 30 vertices, 90 edges, 80 faces, and 20 cells. The cells are 5 cuboctahedra, 5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra, 2 triangular prisms, and 1 octahedron; the vertex figure is a nonuniform triangular prism.

Alternate names

  • Cantellated pentachoron
  • Cantellated 4-simplex
  • (small) prismatodispentachoron
  • Rectified dispentachoron
  • Small rhombated pentachoron (Acronym: Srip) (Jonathan Bowers)

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph 4-simplex t02.svg 100px 100px
Dihedral symmetry [5] [4] [3]
160px
Wireframe
160px
Ten triangular prisms colored green
160px
Five octahedra colored blue

Coordinates

The Cartesian coordinates of the vertices of the origin-centered cantellated 5-cell having edge length 2 are:

\left(2\sqrt{\frac{2}{5}},\  2\sqrt{\frac{2}{3}},\ \frac{1}{\sqrt{3}},\  \pm1\right)
\left(2\sqrt{\frac{2}{5}},\  2\sqrt{\frac{2}{3}},\ \frac{-2}{\sqrt{3}},\ 0\right)
\left(2\sqrt{\frac{2}{5}},\  0,\                   \pm\sqrt{3},\         \pm1\right)
\left(2\sqrt{\frac{2}{5}},\  0,\                   0,\                   \pm2\right)
\left(2\sqrt{\frac{2}{5}},\ -2\sqrt{\frac{2}{3}},\ \frac{2}{\sqrt{3}},\  0\right)
\left(2\sqrt{\frac{2}{5}},\ -2\sqrt{\frac{2}{3}},\ \frac{-1}{\sqrt{3}},\ \pm1\right)
\left(\frac{-1}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\  \pm\sqrt{3},\         \pm1\right)
\left(\frac{-1}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\  0,\                   \pm2\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\ \frac{2}{\sqrt{3}},\  \pm2\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\ \frac{-4}{\sqrt{3}},\ 0\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\  \pm1\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0\right)
\left(-3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\  \frac{2}{\sqrt{3}},\  0\right)
\left(-3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{-1}{\sqrt{3}},\ \pm1\right)

The vertices of the cantellated 5-cell can be most simply positioned in 5-space as permutations of:

(0,0,1,1,2)

This construction is from the positive orthant facet of the cantellated 5-orthoplex.

Cantitruncated 5-cell

Cantitruncated 5-cell
Schlegel half-solid cantitruncated 5-cell.png
Schlegel diagram with Truncated tetrahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,1,2{3,3,3}
tr{3,3,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells 20 5 Truncated octahedron.png(4.6.6)
10 Triangular prism.png(3.4.4)
 5 Truncated tetrahedron.png(3.6.6)
Faces 80 20{3}
30{4}
30{6}
Edges 120
Vertices 60
Vertex figure 80px
sphenoid
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 6 7 8

The cantitruncated 5-cell or great rhombated pentachoron is a uniform 4-polytope. It is composed of 60 vertices, 120 edges, 80 faces, and 20 cells. The cells are: 5 truncated octahedra, 10 triangular prisms, and 5 truncated tetrahedra. Each vertex is surrounded by 2 truncated octahedra, one triangular prism, and one truncated tetrahedron.

Alternative names

  • Cantitruncated pentachoron
  • Cantitruncated 4-simplex
  • Great prismatodispentachoron
  • Truncated dispentachoron
  • Great rhombated pentachoron (Acronym: grip) (Jonathan Bowers)

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph 4-simplex t012.svg 100px 100px
Dihedral symmetry [5] [4] [3]
240px
Stereographic projection with its 10 triangular prisms.

Cartesian coordinates

The Cartesian coordinates of an origin-centered cantitruncated 5-cell having edge length 2 are:

\left(3\sqrt{\frac{2}{5}},\  \pm\sqrt{6},\          \pm\sqrt{3},\         \pm1\right)
\left(3\sqrt{\frac{2}{5}},\  \pm\sqrt{6},\          0,\                   \pm2\right)
\left(3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{5}{\sqrt{3}},\  \pm1\right)
\left(3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{-1}{\sqrt{3}},\ \pm3\right)
\left(3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{-4}{\sqrt{3}},\ \pm2\right)
\left(\frac{1}{\sqrt{10}},\  \frac{5}{\sqrt{6}},\   \frac{5}{\sqrt{3}},\  \pm1\right)
\left(\frac{1}{\sqrt{10}},\  \frac{5}{\sqrt{6}},\   \frac{-1}{\sqrt{3}},\ \pm3\right)
\left(\frac{1}{\sqrt{10}},\  \frac{5}{\sqrt{6}},\   \frac{-4}{\sqrt{3}},\ \pm2\right)
\left(\frac{1}{\sqrt{10}},\  -\sqrt{\frac{3}{2}},\  \sqrt{3},\            \pm3\right)
\left(\frac{1}{\sqrt{10}},\  -\sqrt{\frac{3}{2}},\  -2\sqrt{3},\          0\right)
\left(\frac{1}{\sqrt{10}},\  \frac{-7}{\sqrt{6}},\  \frac{2}{\sqrt{3}},\  \pm2\right)
\left(\frac{1}{\sqrt{10}},\  \frac{-7}{\sqrt{6}},\  \frac{-4}{\sqrt{3}},\ 0\right)
\left(-2\sqrt{\frac{2}{5}},\ 2\sqrt{\frac{2}{3}},\  \frac{4}{\sqrt{3}},\  \pm2\right)
\left(-2\sqrt{\frac{2}{5}},\ 2\sqrt{\frac{2}{3}},\  \frac{1}{\sqrt{3}},\  \pm3\right)
\left(-2\sqrt{\frac{2}{5}},\ 2\sqrt{\frac{2}{3}},\  \frac{-5}{\sqrt{3}},\ \pm1\right)
\left(-2\sqrt{\frac{2}{5}},\ 0,\                    \sqrt{3},\            \pm3\right)
\left(-2\sqrt{\frac{2}{5}},\ 0,\                    -2\sqrt{3},\          0\right)
\left(-2\sqrt{\frac{2}{5}},\ -4\sqrt{\frac{2}{3}},\ \frac{1}{\sqrt{3}},\  \pm1\right)
\left(-2\sqrt{\frac{2}{5}},\ -4\sqrt{\frac{2}{3}},\ \frac{-2}{\sqrt{3}},\ 0\right)
\left(\frac{-9}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\   \pm\sqrt{3},\         \pm1\right)
\left(\frac{-9}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\   0,\                   \pm2\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\  \frac{2}{\sqrt{3}},\  \pm2\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\  \frac{-4}{\sqrt{3}},\ 0\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\  \frac{1}{\sqrt{3}},\  \pm1\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\  \frac{-2}{\sqrt{3}},\ 0\right)

These vertices can be more simply constructed on a hyperplane in 5-space, as the permutations of:

(0,0,1,2,3)

This construction is from the positive orthant facet of the cantitruncated 5-orthoplex.

Related 4-polytopes

These polytopes are art of a set of 9 Uniform 4-polytopes constructed from the [3,3,3] Coxeter group.

Name 5-cell truncated 5-cell rectified 5-cell cantellated 5-cell bitruncated 5-cell cantitruncated 5-cell runcinated 5-cell runcitruncated 5-cell omnitruncated 5-cell
Schläfli
symbol
{3,3,3}
3r{3,3,3}
t{3,3,3}
2t{3,3,3}
r{3,3,3}
2r{3,3,3}
rr{3,3,3}
r2r{3,3,3}
2t{3,3,3} tr{3,3,3}
t2r{3,3,3}
t0,3{3,3,3} t0,1,3{3,3,3}
t0,2,3{3,3,3}
t0,1,2,3{3,3,3}
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel
diagram
Schlegel wireframe 5-cell.png Schlegel half-solid truncated pentachoron.png Schlegel half-solid rectified 5-cell.png Schlegel half-solid cantellated 5-cell.png Schlegel half-solid bitruncated 5-cell.png Schlegel half-solid cantitruncated 5-cell.png Schlegel half-solid runcinated 5-cell.png Schlegel half-solid runcitruncated 5-cell.png Schlegel half-solid omnitruncated 5-cell.png
A4
Coxeter plane
Graph
4-simplex t0.svg 4-simplex t01.svg 4-simplex t1.svg 4-simplex t02.svg 4-simplex t12.svg 4-simplex t012.svg 4-simplex t03.svg 4-simplex t013.svg 4-simplex t0123.svg
A3 Coxeter plane
Graph
4-simplex t0 A3.svg 80px 80px 80px 80px 80px 80px 80px 80px
A2 Coxeter plane
Graph
4-simplex t0 A2.svg 80px 80px 80px 80px 80px 80px 80px 80px

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 1. Convex uniform polychora based on the pentachoron - Model 4, 7, George Olshevsky.
  • Richard Klitzing, 4D, uniform polytopes (polychora) x3o3x3o - srip, x3x3x3o - grip