Central binomial coefficient

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found. In mathematics the nth central binomial coefficient is defined in terms of the binomial coefficient by

{2n \choose n} = \frac{(2n)!}{(n!)^2}\text{ for all }n \geq 0.

They are called central since they show up exactly in the middle of the even-numbered rows in Pascal's triangle. The first few central binomial coefficients starting at n = 0 are:

1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, … (sequence A000984 in OEIS)

Properties

These numbers have the generating function

\frac{1}{\sqrt{1-4x}} = 1 + 2x + 6x^2 + 20x^3 + 70x^4 + 252x^5 + \cdots.

The Wallis product can be written in form of an asymptotic for the central binomial coefficient:

 {2n \choose n} \sim \frac{4^n}{\sqrt{\pi n}}\text{ as }n\rightarrow\infty.

The latter can also be easily established by means of Stirling's formula. On the other hand, it can also be used as a means to determine the constant \sqrt{2\pi} in front of the Stirling formula, by comparison.

Simple bounds are given by

\frac{4^n}{2n+1} \leq {2n \choose n} \leq 4^n\text{ for all }n \geq 1[citation needed]

Some better bounds are

\frac{4^n}{\sqrt{4n}} \leq {2n \choose n} \leq \frac{4^n}{\sqrt{3n+1}}\text{ for all }n \geq 1[citation needed]

and, if more accuracy is required,

{2n \choose n} = \frac{4^n}{\sqrt{\pi n}}\left(1-\frac{c_n}{n}\right)\text{ where }\frac{1}{9} < c_n < \frac{1}{8} for all n \geq 1.[citation needed]

The only central binomial coefficient that is odd is 1.[1][not in citation given]

Related sequences

The closely related Catalan numbers Cn are given by:

C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} -
        {2n \choose n+1}\text{ for all }n \geq 0.

A slight generalization of central binomial coefficients is to take them as  \frac{\Gamma(2n+1)}{\Gamma(n+1)^2}=\frac{1}{n \Beta(n+1,n)}, with appropriate real numbers n, where \Gamma(x) is Gamma function and \Beta(x,y) is Beta function.

See also

References

  1. Banakh, I. (2012). "[1]" Toehold Purchase Problem: A comparative analysis of two strategies
  • Lua error in package.lua at line 80: module 'strict' not found..

External links

This article incorporates material from Central binomial coefficient on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.