Doob–Meyer decomposition theorem

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

The Doob–Meyer decomposition theorem is a theorem in stochastic calculus stating the conditions under which a submartingale may be decomposed in a unique way as the sum of a martingale and an increasing predictable process. It is named for Joseph L. Doob and Paul-André Meyer.

History

In 1953, Doob published the Doob decomposition theorem which gives a unique decomposition for certain discrete time martingales.[1] He conjectured a continuous time version of the theorem and in two publications in 1962 and 1963 Paul-André Meyer proved such a theorem, which became known as the Doob-Meyer decomposition.[2][3] In honor of Doob, Meyer used the term "class D" to refer to the class of supermartingales for which his unique decomposition theorem applied.[4]

Class D Supermartingales

A càdlàg submartingale  Z is of Class D if Z_0=0 and the collection

 \{Z_T \mid \text{T a finite valued stopping time} \}

is uniformly integrable.[5]

The theorem

Let Z be a cadlag submartingale of class D with  Z_0 =0. Then there exists a unique, increasing, predictable process  A with  A_0 =0 such that M_t = Z_t - A_t is a uniformly integrable martingale.[5]

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

External links