Iron tetracarbonyl hydride
200px | |
Names | |
---|---|
Preferred IUPAC name
Tetracarbonyldihydroiron[citation needed]
|
|
Other names
Iron tetracarbonyl dihydride, tetracarbonyldihydroiron[1]
|
|
Identifiers | |
12002-28-7 ![]() |
|
ChemSpider | 452380 ![]() |
Jmol 3D model | Interactive image |
PubChem | 518470 |
|
|
|
|
Properties | |
FeC 4H 2O 4 |
|
Molar mass | 169.901 g mol−1 |
Appearance | Liquid (at -20 °C) |
Melting point | −70 °C (−94 °F; 203 K) |
Boiling point | −20 °C (−4 °F; 253 K) (decomposes) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
![]() ![]() ![]() |
|
Infobox references | |
Iron tetracarbonyl hydride is the organometallic compound with the formula H2Fe(CO)4. Also known as tetracarbonyldihydridoiron, tetracarbonyldihydroiron, or iron tetracarbonyl dihydride, this compound was the first metal hydride discovered. The complex is only stable at low temperatures and decomposes rapidly at temperatures above –20 °C.
Preparation
Iron tetracarbonyl hydride was originally produced by Hieber and Leutert, who developed a two-step process starting from iron pentacarbonyl:[2][3]
- Fe(CO)5 + 2OH− → HFe(CO)4− + HCO3−
- HFe(CO)4− + H+ → H2Fe(CO)4
Current procedures consist of treatment of iron pentacarbonyl with potassium hydroxide and barium hydroxide to yield an orange solution. From this point in the reaction, ideal conditions consist of a cold dark environment, thus dubbing the method the "polar night synthesis".[4] This dark, cold environment stabilizes the dianion species Fe(CO)42−, which is light and temperature sensitive. The orange solution is then treated with sulfuric acid to protonate the anionic intermediate, giving the neutral product.
Structure and properties
In iron tetracarbonyl hydride the Fe(CO)4 group has C2v molecular symmetry with a geometry intermediate between octahedral and tetrahedral. Viewed as an octahedral complex, the hydride ligands are cis. Viewed as a tetrahedral Fe(CO)4 complex, the hydrides occupy adjacent faces of the tetrahedron.[5] Although the structure of tetracarbonyliron with the hydrogen atoms bound as a single H2 ligand has been proposed as an intermediate in some rearrangement reactions,[6] the stable state for the compound has the two atoms as independent ligands.[7]
Chemistry
Iron tetracarbonyl hydride undergoes rapid ligand substitutions. Upon warming, the complex liberates H2, giving trans tetracarbonyliron.[8][clarification needed]
- H2Fe(CO)4 + PPh3 → H2Fe(CO)3PPh3
- H2Fe(CO)3PPh3 → trans-Fe(CO)3PPh3 + H2
The hydrides in tetracarbonyldihydroiron have a pK1 of 6.8 and pK2 of 15.[9] The monoanion itself has been reviewed extensively.[10] The monoanion is an important intermediate in the water-gas shift reaction (WGSR). The slow step in the iron carbonyl-catalyzed WGSR is the proton transfer from water to the iron hydride anion.[11]
- HFe(CO)4− + H2O → H2Fe(CO)4 + OH−
Another way the complex has been used is for cooperative bimetallic activation of CO2.[12]
- Cp2MoCO2 + H2Fe(CO)4 → Cp2MoHCO+ HFe3(CO)11− + H2O
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ SciFinder entry for CAS #12002-28-7, accessed 2012-06-14
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Crabtree R.H.; Mingos D.M.P. 2007. Comprehensive Organometallic Chemistry III From Fundamentals to Applications. Elsevier Ltd.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- Pages with reference errors
- Pages with broken file links
- Articles with unsourced statements from October 2011
- Articles without EBI source
- Articles without KEGG source
- Articles without UNII source
- Articles with changed InChI identifier
- Pages using collapsible list with both background and text-align in titlestyle
- Chemical articles using a fixed chemical formula
- Wikipedia articles needing clarification from June 2012
- Carbonyl complexes
- Iron compounds
- Metal hydrides