Oxotrichlorobis(triphenylphosphine)rhenium(V)

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Oxotrichlorobis(triphenylphosphine)rhenium(V)
200px
Names
IUPAC names
Trichloridooxido
bis(triphenylphosphane)rhenium(V)
Identifiers
17442-18-1 YesY
Properties
ReOCl3(PPh3)2
Molar mass 833.15 g/mol
Appearance yellow microcrystals
Melting point 205 °C (401 °F; 478 K)
not soluble in water
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Oxotrichlorobis(triphenylphosphine)rhenium(V) is the chemical compound with the formula ReOCl3(PPh3)2. This yellow, air-stable solid is a precursor to a variety of other rhenium complexes.[1] In this diamagnetic compound, Re has an octahedral coordination environment with one oxo, three chloro and two mutually trans triphenylphosphine ligands. The oxidation state of rhenium is +5 and its configuration is d2.

Synthesis

ReOCl3(PPh3)2 is commercially available, but it is readily synthesized by reaction of perrhenic acid with triphenylphosphine in a mixture of hydrochloric acid and acetic acid. In this reaction, Re(VII) is reduced to Re(V), and triphenylphosphine is oxidized to its oxide.

HReO4 + 3 HCl + 3 PPh3 → ReOCl3(PPh3)2 + Ph3PO + 2 H2O

The required perrhenic acid solution can be prepared in situ from rhenium(VII) oxide.

Uses

ReOCl3(PPh3)2 is a precursor to a variety of other oxo-, nitridio, and hydrido complexes. It converts to ReH7(PPh3)2 by a treatment with LiAlH4. [2]

ReOCl3(PPh3)2 catalyzes the selective oxidation of secondary alcohols by DMSO, producing the corresponding ketals.[3]

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Pombeiro, A. J. L.; Fatima, M.; Crabtree, R. H. "Technetium and Rhenium: Inorganic & Coordination Chemistry" Encyclopedia of Inorganic Chemistry. John Wiley & Sons: New York, 2006. doi:10.1002/0470862106.ia237