Rectified 5-simplexes

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
5-simplex t0.svg
5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t1.svg
Rectified 5-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t2.svg
Birectified 5-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in A5 Coxeter plane

In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.

There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the rectified 5-simplex are located at the edge-centers of the 5-simplex. Vertices of the birectified 5-simplex are located in the triangular face centers of the 5-simplex.

Rectified 5-simplex

Rectified 5-simplex
Rectified hexateron (rix)
Type uniform 5-polytope
Schläfli symbol r{34} or \left\{\begin{array}{l}3, 3, 3\\3\end{array}\right\}
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4-faces 12 6 {3,3,3}Schlegel wireframe 5-cell.png
6 r{3,3,3}Schlegel half-solid rectified 5-cell.png
Cells 45 15 {3,3}Tetrahedron.png
30 r{3,3}
Faces 80 80 {3}
Edges 60
Vertices 15
Vertex figure Rectified 5-simplex verf.png
{}x{3,3}
Coxeter group A5, [34], order 720
Dual
Base point (0,0,0,0,1,1)
Circumradius 0.645497
Properties convex, isogonal isotoxal

In five dimensional geometry, a rectified 5-simplex, is a uniform 5-polytope with 15 vertices, 60 edges, 80 triangular faces, 45 cells (15 tetrahedral, and 30 octahedral), and 12 4-faces (6 5-cell and 6 rectified 5-cells). It is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S1
5
.

The rectified 5-simplex, 031, is second in a dimensional series of uniform polytopes, expressed by Coxeter as 13k series. The fifth figure is a Euclidean honeycomb, 331, and the final is a noncompact hyperbolic honeycomb, 431. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k31 dimensional figures
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 {\tilde{E}}_{7} = E7+ {\bar{T}}_8=E7++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [33,3,1] [34,3,1]
Order 48 720 23,040 2,903,040
Graph Tetrahedral prism.png 5-simplex t1.svg Demihexeract ortho petrie.svg Up2 2 31 t0 E7.svg - -
Name −131 031 131 231 331 431

Alternate names

  • Rectified hexateron (Acronym: rix) (Jonathan Bowers)

Coordinates

The vertices of the rectified 5-simplex can be more simply positioned on a hyperplane in 6-space as permutations of (0,0,0,0,1,1) or (0,0,1,1,1,1). These construction can be seen as facets of the rectified 6-orthoplex or birectified 6-cube respectively.

Images

Stereographic projection
320px
Stereographic projection of spherical form
orthographic projections
Ak
Coxeter plane
A5 A4
Graph 5-simplex t1.svg 5-simplex t1 A4.svg
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph 100px 100px
Dihedral symmetry [4] [3]

Birectified 5-simplex

Birectified 5-simplex
Birectified hexateron (dot)
Type uniform 5-polytope
Schläfli symbol 2r{34} = {32,2}
or \left\{\begin{array}{l}3, 3\\3, 3\end{array}\right\}
Coxeter diagram CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
4-faces 12 12 r{3,3,3}Schlegel half-solid rectified 5-cell.png
Cells 60 30 {3,3}Tetrahedron.png
30 r{3,3}Uniform polyhedron-33-t1.png
Faces 120 120 {3}
Edges 90
Vertices 20
Vertex figure Birectified hexateron verf.png
{3}x{3}
Coxeter group A5×2, [[34]], order 1440
Dual
Base point (0,0,0,1,1,1)
Circumradius 0.866025
Properties convex, isogonal isotoxal

The birectified 5-simplex is isotopic, with all 12 of its facets as rectified 5-cells. It has 20 vertices, 90 edges, 120 triangular faces, 60 cells (30 tetrahedral, and 30 octahedral).

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S2
5
.

It is also called 02,2 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png. It is seen in the vertex figure of the 6-dimensional 122, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png.

Alternate names

  • Birectified hexateron
  • dodecateron (Acronym: dot) (For 12-facetted polyteron) (Jonathan Bowers)

Images

The A5 projection has an identical appearance to Metatron's Cube.[1]

orthographic projections
Ak
Coxeter plane
A5 A4
Graph 5-simplex t2.svg 5-simplex t2 A4.svg
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph 100px 100px
Dihedral symmetry [4] [[3]]=[6]

Construction

Stereographic projection
320px

The birectified 5-simplex is the intersection of two regular 5-simplexes in dual configuration. The vertices of a birectification exist at the center of the faces of the original polytope(s). This intersection is analogous to the 3D stellated octahedron, seen as a compound of two regular tetrahedra and intersected in a central octahedron, while that is a first rectification where vertices are at the center of the original edges.

320px
Dual 5-simplexes (red and blue), and their birectified 5-simplex intersection in green, viewed in A5 and A4 Coxeter planes. The simplexes overlap in the A5 projection and are drawn in magenta.

It is also the intersection of a 6-cube with the hyperplane that bisects the 6-cube's long diagonal orthogonally. In this sense it is the 5-dimensional analog of the regular hexagon, octahedron, and bitruncated 5-cell. This characterization yields simple coordinates for the vertices of a birectified 5-simplex in 6-space: the 20 distinct permutations of (1,1,1,−1,−1,−1).

The vertices of the birectified 5-simplex can also be positioned on a hyperplane in 6-space as permutations of (0,0,0,1,1,1). This construction can be seen as facets of the birectified 6-orthoplex.

Related polytopes

k_22 polytopes

The birectified 5-simplex, 022, is second in a dimensional series of uniform polytopes, expressed by Coxeter as k22 series. The birectified 5-simplex is the vertex figure for the third, the 122. The fourth figure is a Euclidean honeycomb, 222, and the final is a noncompact hyperbolic honeycomb, 322. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k22 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8
Coxeter
group
2A2 A5 E6 {\tilde{E}}_{6}=E6+ {\bar{T}}_7=E6++
Coxeter
diagram
CDel nodes.pngCDel 3ab.pngCDel nodes 11.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry [[32,2,-1]] [[32,2,0]] [[32,2,1]] [[32,2,2]] [[32,2,3]]
Order 72 1440 103,680
Graph 3-3 duoprism ortho-skew.png 5-simplex t2.svg Up 1 22 t0 E6.svg
Name −122 022 122 222 322

Isotopics polytopes

Isotopic uniform truncated simplices
Dim. 2 3 4 5 6 7 8
Name
Coxeter
Hexagon
CDel branch 11.png = CDel node 1.pngCDel 6.pngCDel node.png
t{3} = {6}
Octahedron
CDel node 1.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
r{3,3} = {31,1} = {3,4}
\left\{\begin{array}{l}3\\3\end{array}\right\}
Decachoron
CDel branch 11.pngCDel 3ab.pngCDel nodes.png
2t{33}
Dodecateron
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
2r{34} = {32,2}
\left\{\begin{array}{l}3, 3\\3 ,3\end{array}\right\}
Tetradecapeton
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
3t{35}
Hexadecaexon
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
3r{36} = {33,3}
\left\{\begin{array}{l}3, 3, 3\\3, 3, 3\end{array}\right\}
Octadecazetton
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
4t{37}
Images Truncated triangle.png 3-cube t2.svgUniform polyhedron-33-t1.png 4-simplex t12.svgSchlegel half-solid bitruncated 5-cell.png 5-simplex t2.svg5-simplex t2 A4.svg 6-simplex t23.svg60px 60px60px 60px60px
Facets {3} Regular polygon 3 annotated.svg t{3,3} Uniform polyhedron-33-t01.png r{3,3,3} Schlegel half-solid rectified 5-cell.png 2t{3,3,3,3} 5-simplex t12.svg 2r{3,3,3,3,3} 6-simplex t2.svg 3t{3,3,3,3,3,3} 30px
As
intersecting
dual
simplexes
Regular hexagon as intersection of two triangles.png
CDel branch 10.pngCDel branch 01.png
120px
CDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png
60px
CDel branch.pngCDel 3ab.pngCDel nodes 10l.pngCDel branch.pngCDel 3ab.pngCDel nodes 01l.png
60px60px
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png

Related uniform 5-polytopes

This polytope is the vertex figure of the 6-demicube, and the edge figure of the uniform 231 polytope.

It is also one of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

References

  1. Lua error in package.lua at line 80: module 'strict' not found. p.160 Figure 6-12
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 5D, uniform polytopes (polytera) o3x3o3o3o - rix, o3o3x3o3o - dot

External links