Semen cryopreservation

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Semen cryopreservation (commonly called sperm banking) is a procedure to preserve sperm cells. Semen can be used successfully indefinitely after cryopreservation. For human sperm, the longest reported successful storage is 22 years.[1] It can be used for sperm donation where the recipient wants the treatment in a different time or place, or as a means of preserving fertility for men undergoing vasectomy or treatments that may compromise their fertility, such as chemotherapy, radiation therapy or surgery.

Freezing

The most common cryoprotectant used for semen is glycerol (10% in culture medium). Often sucrose or other di-, trisaccharides are added to glycerol solution. Cryoprotectant media may be supplemented with either egg yolk or soy lecithin, with the two having no statistically significant differences compared to each other regarding motility, morphology, ability to bind to hyaluronate in vitro, or DNA integrity after thawing. [2]

Semen is frozen using either a controlled-rate, slow-cooling method (slow programmable freezing or SPF) or a newer flash-freezing process known as vitrification. Vitrification gives superior post-thaw motility and cryosurvival than slow programmable freezing.[3]

Thawing

Thawing at 40°C seems to result in optimal sperm motility. On the other hand, the exact thawing temperature seems to have only minor effect on sperm viability, acrosomal status, ATP content, and DNA.[4]

Refreezing

In terms of the level of sperm DNA fragmentation, up to three cycles of freezing and thawing can be performed without causing a level of risk significantly higher than following a single cycle of freezing and thawing. This is provided that samples are refrozen in their original cryoprotectant and are not going through sperm washing or other alteration in between, and provided that they are separated by density gradient centrifugation or swim-up before use in assisted reproduction technology.[5]

Effect on quality

Some evidence suggests an increase in single-strand breaks, condensation and fragmentation of DNA in sperm after cryopreservation. This can potentially increase the risk of mutations in offspring DNA. Antioxidants and the use of well-controlled cooling regimes could potentially improve outcomes.[6]

In long-term follow-up studies, no evidence has been found either of an increase in birth defects or chromosomal abnormalities in people conceived from cryopreserved sperm compared with the general population.[6]

See also

References

  1. Planer NEWS and Press Releases > Child born after 22 year semen storage using Planer controlled rate freezer 14/10/2004
  2. Soy lecithin replaces egg yolk for cryopreservation of human sperm without adversely affecting postthaw motility, morphology, sperm DNA integrity, or sperm binding to hyaluronate. Michael L. Reed, Ph.D.Corresponding Author Informationemail address, Peace C. Ezeh, M.S., Amanda Hamic, B.S., Douglas J. Thompson, M.D., Charles L. Caperton, M.D. Fertility and Sterility. Volume 92, Issue 5, Pages 1787-1790 (November 2009)
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.