Truncated triapeirogonal tiling

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Truncated triapeirogonal tiling
Truncated triapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.6.∞
Schläfli symbol tr{∞,3}
Wythoff symbol 2 ∞ 3 |
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Symmetry group [∞,3], (*∞32)
Dual Order 3-infinite kisrhombille
Properties Vertex-transitive

In geometry, the truncated triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of tr{∞,3}.

Symmetry

File:Truncated triapeirogonal tiling with mirrors.png
Truncated triapeirogonal tiling with mirrors

The dual of this tiling represents the fundamental domains of [∞,3], *∞32 symmetry. There are 3 small index subgroup constructed from [∞,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

A special index 4 reflective subgroup, is [(∞,∞,3)], (*∞∞3), and its direct subgroup [(∞,∞,3)]+, (∞∞3), and semidirect subgroup [(∞,∞,3+)], (3*∞).[1] Given [∞,3] with generating mirrors {0,1,2}, then its index 4 subgroup has generators {0,121,212}.

An index 6 subgroup constructed as [∞,3*], becomes [(∞,∞,∞)], (*∞∞∞).

Small index subgroups of [∞,3], (*∞32)
Index 1 2 3 4 6 8 12 24
Diagrams 80px 80px 80px 80px 80px 80px 80px 80px 80px 80px
Coxeter
(orbifold)
[∞,3]
CDel node c1.pngCDel infin.pngCDel node c2.pngCDel 3.pngCDel node c2.png = CDel node c2.pngCDel split1-i3.pngCDel branch c1-2.pngCDel label2.png
(*∞32)
[1+,∞,3]
CDel node h0.pngCDel infin.pngCDel node c2.pngCDel 3.pngCDel node c2.png = CDel labelinfin.pngCDel branch c2.pngCDel split2.pngCDel node c2.png
(*∞33)
[∞,3+]
CDel node c1.pngCDel infin.pngCDel node h2.pngCDel 3.pngCDel node h2.png
(3*∞)
[∞,∞]

(*∞∞2)
[(∞,∞,3)]

(*∞∞3)
[∞,3*]
CDel node c1.pngCDel infin.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel split2-ii.pngCDel node c1.png
(*∞3)
[∞,1+,∞]

(*(∞2)2)
[(∞,1+,∞,3)]

(*(∞3)2)
[1+,∞,∞,1+]

(*∞4)
[(∞,∞,3*)]

(*∞6)
Direct subgroups
Index 2 4 6 8 12 16 24 48
Diagrams 80px 80px 80px 80px 80px 80px H2chess 26ia.png 80px 80px
Coxeter
(orbifold)
[∞,3]+
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel node h2.pngCDel split1-i3.pngCDel branch h2h2.pngCDel label2.png
(∞32)
[∞,3+]+
CDel node h0.pngCDel infin.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel labelinfin.pngCDel branch h2h2.pngCDel split2.pngCDel node h2.png
(∞33)
[∞,∞]+

(∞∞2)
[(∞,∞,3)]+

(∞∞3)
[∞,3*]+
CDel node h2.pngCDel infin.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel labelinfin.pngCDel branch h2h2.pngCDel split2-ii.pngCDel node h2.png
(∞3)
[∞,1+,∞]+

(∞2)2
[(∞,1+,∞,3)]+

(∞3)2
[1+,∞,∞,1+]+

(∞4)
[(∞,∞,3*)]+

(∞6)

Related polyhedra and tiling

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram CDel node 1.pngCDel p.pngCDel node 1.pngCDel 3.pngCDel node 1.png. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

See also

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • Lua error in package.lua at line 80: module 'strict' not found.

External links

  1. Norman W. Johnson and Asia Ivic Weiss, Quadratic Integers and Coxeter Groups, Canad. J. Math. Vol. 51 (6), 1999 pp. 1307–1336 [1]