Turn (geometry)
Turn | |
---|---|
Unit of | Plane angle |
Symbol | tr or pla |
Unit conversions | |
1 tr in ... | ... is equal to ... |
radians | 2π |
degrees | 360° |
gons | 400g |
A turn is a unit of plane angle measurement equal to 2π radians, 360° or 400 gon. A turn is also referred to as a revolution or complete rotation or full circle or cycle or rev or rot.
A turn can be subdivided in many different ways: into half turns, quarter turns, centiturns, milliturns, binary angles, points etc.
Contents
Subdivision of turns
A turn can be divided in 100 centiturns or 1000 milliturns, with each milliturn corresponding to an angle of 0.36°, which can also be written as 21′ 36″. A protractor divided in centiturns is normally called a percentage protractor.
Binary fractions of a turn are also used. Sailors have traditionally divided a turn into 32 compass points. The binary degree, also known as the binary radian (or brad), is 1⁄256 turn.[1] The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a single byte. Other measures of angle used in computing may be based on dividing one whole turn into 2n equal parts for other values of n.[2]
The notion of turn is commonly used for planar rotations. Two special rotations have acquired appellations of their own: a rotation through 180° is commonly referred to as a half-turn (π radians),[3] a rotation through 90° is referred to as a quarter-turn. A half-turn is sometimes referred to as a reflection in a point since these are identical for transformations in two-dimensions.
History
The word turn originates via Latin and French from the Greek word τόρνος (tornos – a lathe).
In 1697, David Gregory used <templatestyles src="Sfrac/styles.css" />π/ρ (pi over rho) to denote the perimeter of a circle (i.e., the circumference) divided by its radius.[4][5] However, earlier in 1647, William Oughtred had used <templatestyles src="Sfrac/styles.css" />δ/π (delta over pi) for the ratio of the diameter to perimeter. The first use of the symbol π on its own with its present meaning (of perimeter divided by diameter) was in 1706 by the Welsh mathematician William Jones.[6] Euler adopted the symbol with that meaning in 1737, leading to its widespread use.
Percentage protractors have existed since 1922,[7] but the terms centiturns and milliturns were introduced much later by Sir Fred Hoyle.[8]
The German standard DIN 1315 (1974-03) proposed the unit symbol pla (from Latin: plenus angulus "full angle") for turns.[9][10] Since 2011, the HP 39gII and HP Prime support the unit symbol tr for turns.
Mathematical constants
One turn is equal to 2π (≈6.283185307179586)[11] radians.
Turns | Radians | Degrees | Gradians (Gons) |
---|---|---|---|
0 | 0 | 0° | 0g |
<templatestyles src="Sfrac/styles.css" />1/24 | <templatestyles src="Sfrac/styles.css" />π/12 | 15° | <templatestyles src="Sfrac/styles.css" />16+2/3g |
<templatestyles src="Sfrac/styles.css" />1/12 | <templatestyles src="Sfrac/styles.css" />π/6 | 30° | <templatestyles src="Sfrac/styles.css" />33+1/3g |
<templatestyles src="Sfrac/styles.css" />1/10 | <templatestyles src="Sfrac/styles.css" />π/5 | 36° | 40g |
<templatestyles src="Sfrac/styles.css" />1/8 | <templatestyles src="Sfrac/styles.css" />π/4 | 45° | 50g |
<templatestyles src="Sfrac/styles.css" />1/2π | 1 | c. 57.3° | c. 63.7g |
<templatestyles src="Sfrac/styles.css" />1/6 | <templatestyles src="Sfrac/styles.css" />π/3 | 60° | <templatestyles src="Sfrac/styles.css" />66+2/3g |
<templatestyles src="Sfrac/styles.css" />1/5 | <templatestyles src="Sfrac/styles.css" />2π/5 | 72° | 80g |
<templatestyles src="Sfrac/styles.css" />1/4 | <templatestyles src="Sfrac/styles.css" />π/2 | 90° | 100g |
<templatestyles src="Sfrac/styles.css" />1/3 | <templatestyles src="Sfrac/styles.css" />2π/3 | 120° | <templatestyles src="Sfrac/styles.css" />133+1/3g |
<templatestyles src="Sfrac/styles.css" />2/5 | <templatestyles src="Sfrac/styles.css" />4π/5 | 144° | 160g |
<templatestyles src="Sfrac/styles.css" />1/2 | π | 180° | 200g |
<templatestyles src="Sfrac/styles.css" />3/4 | <templatestyles src="Sfrac/styles.css" />3π/2 | 270° | 300g |
1 | 2π | 360° | 400g |
Tau proposal
In 2001, Robert Palais proposed using the number of radians in a turn as the fundamental circle constant instead of π, which amounts to the number of radians in half a turn, in order to make mathematics simpler and more intuitive, using a "pi with three legs" symbol to denote the constant ( = 2π).[12]
In 2010, Michael Hartl proposed to use the Greek letter τ (tau) instead for two reasons. First, τ is the radian angle measure for one turn of a circle, which allows fractions of a turn to be expressed, such as <templatestyles src="Sfrac/styles.css" />2/5τ for a <templatestyles src="Sfrac/styles.css" />2/5 turn or <templatestyles src="Sfrac/styles.css" />4/5π. Second, τ visually resembles π, whose association with the circle constant is unavoidable.[13] Hartl's Tau Manifesto gives many examples of formulas that are simpler if tau is used instead of pi.[14][15][16]
Examples of use
- As an angular unit, the turn or revolution is particularly useful for large angles, such as in connection with electromagnetic coils and rotating objects. See also winding number.
- The angular speed of rotating machinery, such as automobile engines, is commonly measured in revolutions per minute or RPM.
- Turn is used in complex dynamics for measure of external and internal angles. The sum of external angles of a polygon equals one turn. Angle doubling map is used.
- Pie charts illustrate proportions of a whole as fractions of a turn. Each one percent is shown as an angle of one centiturn.
Kinematics of turns
In kinematics a turn is a rotation less than a full revolution. A turn may be represented in a mathematical model that uses expressions of complex numbers or quaternions. In the complex plane every non-zero number has a polar coordinate expression z = r cis(a) = r cos(a) + ri sin(a) where r > 0 and a is in [0, 2π). A turn of the complex plane arises from multiplying z = x + iy by an element u = ebi that lies on the unit circle:
- z ↦ uz.
Frank Morley consistently referred to elements of the unit circle as turns in the book Inversive Geometry (1933) that he coauthored with his son Frank Vigor Morley. [17]
The Latin term for turn is versor, which is a quaternion that can be visualized as an arc of a great circle. The product of two versors can be compared to a spherical triangle where two sides add to the third. For the kinematics of rotation in three dimensions, see quaternions and spatial rotation.
See also
- Angle of rotation
- Revolutions per minute
- Repeating circle
- Spat
- Unit interval
- Turn (rational trigonometry)
- Spread
Notes and references
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
External links
- Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Sequence A019692
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.